A Generalized Machine Fault Detection Method Using Unified Change Detection
نویسندگان
چکیده
Many different techniques have been developed for detecting faults in rotating machinery. This is because different fault types typically require different techniques for the effective detection of the fault. However, for many new or unknown fault types, we have found that the existing detection techniques are either incapable or ineffective, and that we therefore need to come up with brand new methods after the fault event. This can significantly constrain the usefulness and effectiveness of Prognostic Health Management (PHM) systems. In this paper we attempt to look at detecting global changes in the synchronously averaged signals as the machine’s health status progresses from healthy to faulty, and to define one unified signal processing technique and its associated condition indicators for the detection of changes caused by various types of faults in rotating machinery. The proposed method is conceptually very simple, and its effectiveness is demonstrated using vibration data from machines with several different types of faults. The results have shown that this single unified change detection approach can be very effective in detecting and trending changes caused by many different types of machine faults.
منابع مشابه
Stator Turn-to-Turn Fault Detection of Induction Motor by Non-Invasive Method Using Generalized Regression Neural Network
Condition monitoring and protection methods based on the analysis of the machine's current are widely used according to non-invasive characteristics of current transformers. It should be noted that, these sensors are installed by default in the machine control center. On the other hand, condition monitoring based on mathematical methods has been proposed in literature. However, they are model b...
متن کاملFault Detection Method on a Compressor Rotor Using the Phase Variation of the Vibration Signal
The aim of this work is the application of the phase variation in vibration signal for fault detection on rotating machines. The vibration signal from the machine is modulated in amplitude and phase around a carrier frequency. The modulating signal in phase is determined after the Hilbert transform and is used, with the Fast Fourier Transform, to extract the harmonics spectrum in phase. This me...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملStator Fault Detection in Induction Machines by Parameter Estimation Using Adaptive Kalman Filter
This paper presents a parametric low differential order model, suitable for mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman filter is proposed for recursively estimating the states and parameters of continuous–time model with discrete measurements for fault detection ends. Typical motor faults as interturn short circuit and increased winding resistance ...
متن کاملEccentricity Fault Diagnosis Studying for a Round Rotor Synchronous Machine
The paper presents a mathematical base modeling combined to Modified-Winding -Function-Approach (MWFA) for eccentricity fault detection of a round-rotor synchronous machine. For this aim, a 6-pole machine is considered, and the machine inductances are computed by MWFA in healthy and also under eccentricity fault. A numerical discrete-time method has been proposed to machine modeling in voltage-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014